⁵⁷Fe N.M.R. Spectroscopy of Heme Proteins: Chemical Shift Anisotropy and Relaxation Parameters of Carbonylmyoglobin

Lars Baltzer,** Edwin D. Becker,^b Rolf G. Tschudin,^b and Otto A. Gansow*c

^a Department of Organic Chemistry, University of Goteborg, S-41296 Goteborg, Sweden

^b Laboratory of Chemical Physics, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases,

National Institutes of Health, Bethesda, MD 20205, U.S.A.

^c Radiation Oncology Branch, National Cancer Institute, Building 10, Room B3-B69, National Institutes of Health, Bethesda, MD 20205, U.S.A.

The first observation of ⁵⁷Fe n.m.r. signals in a protein, carbonylmyoglobin, is reported, together with a determination of the ⁵⁷Fe relaxation times and chemical shift anisotropy.

Extensive n.m.r. studies of heme proteins and model compounds, such as porphyrins, have been undertaken with ¹H and ¹³C, and to some extent ¹⁵N.¹⁵⁷Fe, with a spin of 1/2 and a large range of chemical shifts that are sensitive to substituent effects,^{2,3} has been little studied because of its extremely low sensitivity (7.4×10^{-7} that of ¹H at natural abundance, 2.2%). Recently, however, ⁵⁷Fe n.m.r. studies of two porphyrins, enriched to about 90%, have been reported.^{3,4} We present here the first ⁵⁷Fe n.m.r. data on a heme protein, carbonylmyoglobin (MbCO).

The ⁵⁷Fe n.m.r. experiments were run at 16.326 MHz on a Nicolet NT-500 n.m.r. system operating at 11.74 T. A home-built solenoidal coil probe, with deuterium lock and temperature control, was used with 10 mm diameter nonspinning sample tubes. Observations were made with 30 µs pulsewidths (90° pulse \equiv 35 µs), a spectral width of 10 kHz, and a pulse repetition time of 51 ms. Myoglobin (Sigma) was reconstituted with ⁵⁷Fe protoporphyrin-IX (PP-IX) according to standard procedures. The sample used was 1.1 ml of 10 mM MbCO, enriched to 90% in ⁵⁷Fe, at pH 7 with 25% D₂O in H₂O as solvent. Temperature was maintained at 15 °C ($\pm \sim$ 0.5 °C).

Figure 1 shows the ⁵⁷Fe n.m.r.spectrum of MbCO, acquired in a period of 10 h under the conditions described. A line-broadening of 50 Hz was applied. The chemical shift of 8234 p.p.m., relative to $Fe(CO)_5$ as a reference, compares with values of 8211 p.p.m. for Fe(PP-IX)(CO)(py) in pyridine (py)³ and about 7300 p.p.m. for two other porphyrins.⁴ After correction for the line-broadening that was deliberately introduced and for broadening due to change in chemical shift with temperature fluctuation, the true linewidth is about 100 (± 10) Hz, corresponding to a T_2 of about 3.2 ms. From a progressive saturation experiment (repetition times of 17, 51, and 102 ms), we can estimate a very rough value of T_1 of 30 ms.

For ⁵⁷Fe in t-butylferrocene we showed previously that relaxation at 16.3 MHz is due almost solely to chemical shift anisotropy (C.S.A.).³ It is reasonable to assume the C.S.A. mechanism to be dominant here too, since little else could relax the ⁵⁷Fe effectively in a diamagnetic protein.⁵ From the standard equations for T_1 and T_2 determined by C.S.A,⁵ we can calculate the rotational correlation time $\tau_c = 35$ ns and the C.S.A. = 3050 p.p.m., at 15 °C. (A value of $\tau_c = 19$ ns for MbCO at 36 °C from ¹³C n.m.r. studies has been reported.⁶) For comparison, the model compound ${}^{57}Fe(PP-IX)(CO)(py)$ has a ⁵⁷Fe T_1 of 0.17 s at 23 °C,³ and a T_1 of a meso ¹³C of 0.18 s. From the usual relation for dipolar relaxation of the ¹³C nucleus,⁵ a value of $\tau_c = 2.4 \times 10^{-10}$ s can be obtained, and from that a C.S.A. of 4200 p.p.m. calculated. Within the several experimental errors involved, these values of C.S.A. are thus of comparable magnitude.

⁵⁷Fe n.m.r. chemical shifts are highly temperature dependent. From measurements in the 10—30 °C range, we estimate a temperature coefficient of chemical shift of -1.6 p.p.m./°C for MbCO, as compared with +2.3 for Li₄Fe(CN)₆, +0.7 for

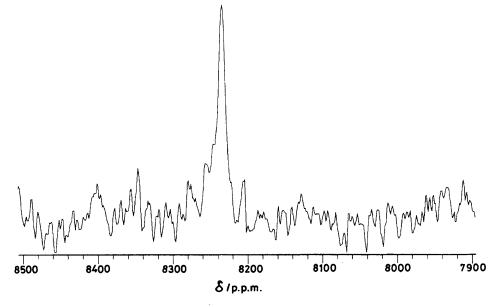


Figure 1. ⁵⁷Fe N.m.r. spectrum of 1.1 ml of 10 mM MbCO in H₂O-D₂O (3:1), pH 7, 15 °C. Total experimental time 10 h. Line-broadening 50 Hz.

t-butylferrocene, and +2.1 for Fe(bipyridyl)₃Cl₂. The negative coefficient for MbCO is interesting but may result from a combination of factors.

These results demonstrate the feasibility of 57Fe n.m.r. studies of heme proteins with enriched materials. The use of a 500 MHz spectrometer is helpful in some respects but may not be optimum. For small molecules, under extreme narrowing conditions, sensitivity for 57Fe n.m.r. improves with increasing magnetic field, since signal/noise increases approximately as $B_0^{3/2}$; T_1 decreases as B_0^2 , thus permitting more rapid pulse repetition; and the C.S.A. contribution to linewidth is usually not very great. With large molecules, such as proteins, the frequency dependence of T_1 is more complex, and the shortening with increased magnetic field may become smaller or absent. Nevertheless, the $B_0^{3/2}$ dependence remains, and higher field still provides better integrated signal/noise. The increased C.S.A. may, however, lead to substantially broader lines, and hence reduce peak signal/noise approximately as B_0^2 , making sensitivity only slightly field dependent.

Financial support for L. B. from the Swedish Natural Science Research Council is gratefully acknowledged.

Received, 29th April 1985; Com. 555

References

- 1 H. M. Goff, in 'Iron Porphyrins,' eds. A. B. P. Lever and H. B. Gray, Addison-Wesley, Reading, Massachusetts, 1983, ch. 4.
- 2 T. Jenny, W. Von Philipsborn, J. Kronenbitter, and A. Schwenk, J. Organomet. Chem., 1981, 205, 211.
- 3 L. Baltzer, E. D. Becker, B. A. Averill, J. M. Hutchinson, and O. A. Gansow, J. Am. Chem. Soc., 1984, 106, 2444.
- 4 T. Nozawa, M. Sato, M. Hatano, N. Kobayashi, and T. Osa, Chem. Lett., 1983, 1289.
- 5 See, for example, T. C. Farrar and E. D. Becker, 'Pulse and Fourier Transform NMR,' Academic Press, New York, 1971, ch. 4.
- 6 E. Oldfield, R. S. Norton, and A. Allerhand, J. Biol. Chem., 1975, 250, 6368.